
A-R165 328 CHARACTERIZATION OF AN ADA SOFTWARE DEVELOPHENT(U) 1/
AMRYLAND UNIV COLLEGE PARK DEPT OF CONPUTER SCIENCE
V R BASILI ET AL SEP 85 NSBi4-82-K-0225

UNCLASSIFIED F/G 5/9 UL

ImilEE/EE



I

1" 1.0 '  1= I1

L2
1. 1~ 2.0

1111.25.6

MICROCOPY RESOLUTION TEST CHART

IYThONAi IRfAtj (IF SIANI ARDS 19b3 A



,/

Characterization of an Ada
Software Development Q

Victor R. Basill, Elizabeth E. Katz, Nora Monina Panilo-Yap, Connie Loggia Ramsey, and Shih Chang

University of Maryland

N

a A da is already required for use in (A"Our study attempts to meet several
* -embedded software of the : goals. The first focuses on characteri-

United States Department of Defense. zation of the effort, the changes, and
"--In time, more government agencies the errors of the project. The second

. and private-sector companies will be considers how Ada was used on the
. using Ada, yet it is not without its project. The third concerns evaluation

problems. Though praised for being of the data collection and validation
comprehensive, Ada has also been process, while the fourth concentrates

- The University of criticized for being cumbersome. Its on the development of measures for

Maryland and General effective use by people with varied the Ada Progra 'ming Support Envi-
backgrounds will depend on training, ronment. -- -Electric monitored an available tools, and the application of The development of metrics is an

industrial software both to the project at hand. on-going project discussed by Basili

. development project in This article examines the use of Ada and Katz' and Gannon et al., 2 so

Ada at GE. The findings in a software project developed by the Ada-specific metrics will not be dis-

will aid in the training, General Electric Company. The proj- cussed here except as they apply to this

tool support, and ect was monitored by the University of project.
methodology for future Maryland and GE to identify areas of

Ada projects. success and difficulty in learning and Data sources and validation
Access1on tror using Ada as both a design and a
-TS -G--& coding language. Since production- From the start of the project, data
"Il TA" quality Ada translators were not readi- was collected from a variety of
-i - .. ly available, the study focused on sources. Change data, in particular, is

_ training and early software devel- often gathered only after the code has
opment.eocus on the use and ef- been compiled and entered into a

feet of Ada on- ect, which was "system" for use by other project
conducted primarily in PM>) Our members. In this project, however, all
study also presents the major factors changes made after the text was on-line
to consider before using Ada in soft- were included. Therefore, compari-
ware development, particularly when sons with data of other projects may

ell training in Ada is necessaryr-AIThbih be misleading. However, some of the
manyofourconclusionsmayseemob- data will be presented with compiler-
vious now, they were unexpected when detectable fault, eliminated so com-
this project began. parisons can be made ,,ith the early

,0."September 1985 A , ,2 ,' k' '''' , , 53

1..'" , '10 , G , I



taken from the latest version for each
module.

CNANG~ ~A simple parser for Ada and the
PDL was written to gather the various

2. Mie wee__W4_off__fort___change__________ code measures and to check the syntax
of the PDL. It will be enhanced to

4. Tocovetuel, imote the Odemise Change. the hNge" WOO dOCIAim.,t that needit cmangig is.
wonmeeae~ue~jmiute ~gather more complicated measures as

POL flm de_ __ __ _ __ _
~ A~ i Codi~t e IfOtd1ii nt ClS hSch.e we understand more about Ada.

VI q M twheofftobegin pttvlohvdand solae t hi s chandsttdge a ed oscagd

lI h. 411I. 2 dys I Wit. 2 Wkse. 1 mo. 2 mos. Data valiation. Data collected on
7.Tis tetwis aSdt, ~cec 0M
I weovicoethnoeeWAtCfPlNOM forms is difficult to validate, 4 but

Oiag N te,",~i valid data is necessary for valid results;
raGnelant mmWe psteit lthe etuoOfflai b~iw
oidc ofione other gablem In the emiuowmeni einrnmeni (xiasin tpsow therefore, the completed forms were

atI
1
I clr" beait Ordouenato screened for inconsistencies. The pro-

I. hilio r dldetibfdfi& COWheg'que grammers could then clarify discrep-
Uei11sag anocte"wicli w is atechtre eun OfI~scag atucmiti ytmCnitny ancies before data was analyzed.

esetdat, Changeut Screening should be done as soon as
t 1 ___________ .. j...~--possible in future studies. If the forms

___________could be completed on-line, checked
L....t I ___________for inconsistencies. and automatically

I I I____________entered into a database, validation

_ _ _ _ _ _could proceed more quickly. We sug-

checklist of their expectations at each

______milestone of the project.

Not tateelioflheemit egntahis dlduel Document Change Repon.) The project
a wa eiMliwie documets woe eummled or wiilt be exanied In detewining the change.

Rtfatte. MLI Code fectioqunoeftnothieraei
,.. ...... i........tThis study was arranged to monitor

____________training, designing, coding, and unit
I___ l........i........ _______________and system testing of a realistic in-

I____dstia softwa.re..... L development proj-
% ect. We initially planned to study the

Figure. 1. Change requst fom entire software development, but with-
out a production-quality Ada corn-

stags o oter arl Ad prjecs. ur crretio, a eror escipton orm piler, the task was nearly impossible.
staes f ohe ealy daproect. Or orrctinan rro decrptin frm However, many of our observations

data is, however, incomplete because was also used. For every component about early development may apply to
* the project is incomplete; however, it involved in a change, an individual other projects using Ada.

might be useful for comparison to document change report form was We emphasize that this project
other projects. filled out indicating that the librarian began in January 1982, when many ex-

made the change and documenting the pected that a couple of weeks would be
Data sources. The programmers time needed to put the change into the suf ficient for programmers to learn

were asked to complete various forms. code or design. Copies of the change Ada. Many of those expectations have
* Each week, a component status report report form and the error report form changed now that we, and others, have
4 form indicated how each programmer's can be found in Figures I and 2. used Ada. At least some of these

effort was distributed by component Copies of the other forms can be changes were caused by early observa-
involved and by phase of devel- found in Basili et al.' tions of and discussions about this
opment. Each time a need for change In addition, a copy ot each design project. However, this study provides
arose, a change-request form was and code version of every module vkas some empirical evidence for certain

J. completed. If the change was an error kept. The ;ource ctide measures %kere noNw widely -held observations.

COMPUTER

4

-ft.



EANOR QESCRPTION FORM for CHANGE REQUEST 0........

I. Type of En, ri* ncw

WWWWOauimlunrettip..ted
- itn corraci

Codo..CwowC
- eutwrralomlO~fnisliTsun~derstood (not0 Ianguage O -COfI

Wa t.er ; ti the usi of data _ ofPi fnt i ont _ 7
L. Did Ohs use go Ada. s 0.Qr' .a whlenitto hseVag cotribute to Wh~ervr

Program m ers and training. Four it s~o. .2 .1tue Only ao~~ IYA41 arndr? __ _ __ _ _

programmers with diverse back-
grounds were selected in order to adoes ept iouintron @.rn the featu-0 Clearly? _ Y&I .- No

examine whether a programmer's ex- udrto fetue Sepahately. brat not tWOr interation

perience and education would in- =dlwn- understand 'eatursfmslay ta.

fluence his understanding and use of C. .0 tt noniir eee o o c the @"or found?

Ada. Table I shows the education, ex- Ad 046CO nsnUa
--... arloter programmnerperience, and language knowledge of

each programmer, but a sample of js

N ~four programmers can only hint at ot~

possible influences. A more detailed Deetn eno Isltn Adourihg

Walfr Successful Triedto StrU M~l3study of background and performance IN ogle In Deetn FitndCame InFlindling I
*is presented by Bailey. 51 Vareattan Eno rnio I ot

None of the programmers knew Desgn lithog

Ada before the project began; they Gods reading I0
C4deuailittrougtt

volunteered to learn Ada. Therefore, Tami wilow terrograWseP I

they were probably more enthusiastic Aadtt ocurnesatlo I ____I
Cstar m taesw0 iIIthan most programmers about using pi"C WW~~~ _________

the language. Since this was an early T"" ____

project, the training was longer (one Inpcio of "out______H _________

___________________ tot ni t1I* ~month) and more comprehensive than Acetac tt ____________

the industry standard at the time. ~ Aft _____________ _____________

* ~~The training began with 15 hours of ItI__________

*videotaped lectures by Ichbiah, Firth, I I
*and Barnes over aperiod of four days. In. 4hs 2days 1 IL 2 wk. Im. 2 Onc.

Six days of in-house training by 7. When didtheeroPr terthe 11"101117

George W. Cherry in Ada syntax and - rehvrot - dsign ..-.Adoco~i i -tinti

basic concepts spread over the follow- ioi.. 'in a". C~ng -la o

ing four weeks. During this time, the 8 Usethis sceto gve any adflonall nfonnton thalt fghithelp inuncantanding t* Cause ofthe change idts

*programmers also practiced writing eiliaos

Ada programs, read the Ada reference
manual, and reviewed their class Fgr .Errrpr om
notes. The NYU Ada/Ed interpreter Fgr .Errrpr om
was used for programming assign-
ments, which included a 500-line team
project. Table 1. Backgrounds of programmers.

However, as usual, the program -_________________________________
mers had little experience with many of V EARS OF
the software engineering practices that jPROFESSIONAL
Ada was designed to support .6 They PROGRAMMER EXPERIENCE EDUCATION LANGUAGES KNOW,4.
did have varying degrees of experience LEAD 9 B S. FORTRAN. ASSEMBLER
with structured software development (COMP SCI
practices, e.g., design and code walk-
throughs, structured programming, SENIOR 7M.S. FORTRAN. ASSEMBLER.
and program design language. They (COMP SCI i SNOBOL. PL/1I. LISP
were given a half-day review of soft.
ware development practices by Victor JUNIRp 8 S FOATRAN ASSEMBLER
R. Baiii to provide them with a comn- (COMP SC'I PACL PL/1. LISP
mon perspective onI these techniques.
A( the timec. such traoinine in method- LiBRAP'A14 *0 C £C.CQ
olog was considered sufI iciunt; how- IP!

4 ever. further discus~sionis off method-

ISeptember 1985 5

%'

'sp P .



- I - - -IM VI

Table 2. Size characteristics of the product. analysis was done prior to and concur-
P E rently with training, and an Ada-like

PROGRAMMER Program Design Language was used
SIZE MEASURE LEAD SENIOR JUNIOR LIBRARIAN TOTAL to design the system.

PDL The PDL has two levels. The first
NON-BLANK LINES 1364 2301 1430 203 5298 describes the input, output, and excep-
TEXT UNES 560 978 891 117 2546 tions for the module, includes a brief
EXECUTABLE STATEMENTS 266 421 343 65 1095 abstract of what the module should
COMPILATION UNITS 9 14 19 1 43 do, and outlines the algorithm. The

entire first level is written in Ada
ADA comments.

NON-BLANK LINES 1247 3611 3509 145 8512 The second level is a more detailed
TEXT LINES 706 1904 1648 117 4375 description of the algorithm with a
EXECUTABLE STATEMENTS 290 718 661 62 1731 combination of Ada and PDL escapes
COMPILATION UNITS 4 20 24 1 49 enclosed in braces. These escapes can

replace any Ada nonterminal, though
TOTAL (ADA AND they usually replace statements and
NON-EXPANDED POL) conditionals. The first level remains as

NON-BLANK LINES 1633 3611 4307 396 9899 documentation for the code.
TEXT LINES 857 1904 2159 274 5154 After design, the system was coded
EXECUTABLE STATEMENTS 378 718 866 127 2089 in Ada, and some of it was unit tested.
COMPILATION UNITS 9 20 36 2 67 As the project was begun before pro-

duction-quality Ada compilers were
available, it was not completely coded

- or tested. About 750 fines of PDL text
were left uncoded. Some unit testing

ology, especially the use of abstractions Development and product. The was done with the NYU Ada/Ed inter-
during design, occurred during the project under study involved the re- preter and the ROLM compiler, but
project as the programmers used the design and implementation in Ada of a no system testing was conducted.
techniques. portion of a satellite ground control The product was examined by a

This approach (Ada first, software system originally written in Fortran. It number of people interested in but not
engineering techniques later) did not included an interactive operator inter- associated with the project, such as the
seem to give the programmers the face, graphic output routines, and developers of the original project. The
appropriate model for learning how to concurrent telemetry monitoring. The design was judged to be functional
use Ada to support the software engi- programmers never saw the compar- rather than object-oriented. This as-
neering concepts. They had only the able Fortran source programs. Be- sessment was not surprising since the
programming model from their pre- cause pieces of the subset were scat- programmers were most familiar with
vious language experience, predomi- tered throughout the original system Fortran and its functional approach
handy Fortran. Prior training in the and the developed system contained and the requirements were functional
software engineering concepts might some added features, determining the in nature. In fact, the high-level Ada
have better prepared them for learning precise size of the subset as imple- design was very similar to the original
Ada. Bailey attempted to compare the mented in Fortran was difficult. How- Fortran design.
two training approaches (Ada first and ever, the subset was estimated to con- In order to provide an initial
software engineering concepts second tain between 5000 and 8000 text lines characterization of this project, Table
versus the opposite ordering). I His of Fortran, including declarations but 2 provides some size data for the
study tried to correlate the program- not comments or blank lines, design and code. Note that some
mers' background and the order of The project began in February 1982 desigtn was never expanded into code
concept presentation with success in and ended in July 1983. However, because the project was not com-
the classes he studied. However, the most of the development took place pleted. In addition, many sections of
results wereinconclusiveandindicated between February and December code were copied almost verbatim
that more studies are needed to deter- 1982. Some testing was done between from the corresponding PDL. All but
mine how Ada should be taught. May and Jul, 1983. Requirements four of the modules with both i'DL

56 COMPUTER

% . . -.- .. .
" " ". ',' .' " .*,'. " , "" " . .. -. "%" ' '.'-'.~ '. .."- ' .'. ''" .''" ,'*. 'w'''

° '
'%"%'



and code had a text expansion ratio Table 3. Effort for each phase of the project.
below two to one. Of the remaining
four modules, three had expansion AMOUNTOFTIME
ratios just over two to one, and one PROJECT PHASE (IN HOURS) PERCENTAGE
module expanded from 29 text lines to REQUIREMENTS ANALYSIS 530.5 12.73
124. Therefore, the total section in- REQUIREMENTS WRITING 113.6 2.73
dludes only code and non-expanded DESIGN CREATION 514.4 12.34

DESIGN READING 37.7 0.91
design. Nonblank lines of source in- FORMAL DESIGN REV!EW 162.4 3.89
elude comment lines but not blank CODING 305.6 7.33
lines. Text lines must have some Ada CODE READING 13.3 0.32
or PDL on them. Executable state- FORMAL CODING REVIEW 62.3 1.50
ments do not include declarations UNIT TESTING 332.7 7.98

unless there is an initialization in the INTEGRATION TESTING 0 0.00
REVIEW TESTING 0 0.00

declaration. TRAINING 849.1 20.38
OTHER ACTIVITY 1245.7 29.89

Factors affecting the data TOTAL REQUIREMENTS 644.1 15.46
TOTAL DESIGN 714.5 17.14
TOTAL CODE DEVELOPMENT 381.2 9.15

Several factors affected the out- TOTAL TESTING 332.7 7.98
come of this study, and understanding TOTAL TRAINING 849.1 20.38
them is important for proper inter- TOTAL OTHER ACTIVITY 1245.7 29.89
pretation of the results. Many will not
be present in later Ada developments, ENTIRE PROJECT 4167.3 100.00
but the training and tool issues that
clearly affected this project will affect
others as Ada use increases, remained until the code developed Effort

The useful, but very slow, NYU from the design was compiled. Many
Ada/Ed interpreter became unusable of these later changes were riot made in The first goalof the study is to
toward the end of the project, as the the design; therefore, sc me of the characterize the effort expended on the
size of the developing system grew. design and code documents were in- project. By doing so, we can provide
This difficulty had a demoralizing ef- consistent. In addition, design reviews insight into how programmer time
feet on the programmers, and they did tended to focus on the numerous, easi- might be used in future Ada projects
not finish coding or testing the project. ly detected, trivial errors rather than and a basis for comparison with later
When the ROLM compiler became on the deeper design issues and, per- Ada projects.
available, further testing was done. haps, errors. A PDL processor would Table 3 shows the time spent on

The results set forth are based on have changed this focus. each phase of the project, including
data collected through coding and Type and quantity of training were training. Productivity was calculated

some unit testing. In addition, the vast other factors. Twenty percent of the from the total lines in Table 2 and the
majority of the Ada-related errors total effort was spent on training, total design and code development
either were or could have been detected Software engineering concepts such as time in Table 1. For each hour spent in
by a compiler. The dominance of these data abstraction and information design and code development, 9.03
errors might have diminished had the hiding were not stressed during Ada nonblank lines of code and 4.70 text
code been executed and testing com- training, although they were presented lines were developed. The values are
pleted. Many more logic errors might to the programmers afterward. The upper bounds (and may not be mean-
have been uncovered had all the programmers indicated that training ingful since the project was not corn-
modules undergone error-free corn- was insufficient, and their use of Ada pleted).
pilation. suggests that they probably needed

Many trivial errors that might have more. Therefore, Ae must conclude
been detected by a PDL processor ap- that a sizable effort %%ill be needed to Changes
peared in the design. Some of thc,, learn Ada and must be considered
were detected during design readings when planning earl. projects using the Our second goal is to characterize
and resiew and were removed. Others language. the changes in the project in order to

September 1985 57

i% a .%



Table 4. Breakdown of changes by type. usual were mostly planned enhance-
ments and improvements of clarity,

NUMBER maintainability, and documentation
TYPEOFCHANGE OF CHANGES PERCENTAGE of requirements documents. A change

ERROR CORRECTIONS 192 56.96 that took one week was a planned en-
CHANGES IN PROBLEM DOMAIN 1 0.29 hancement in a requirements section.
PLANNED ENHANCEMENTS 9 2.67 he t nta ie ent etin

AVOIDANCES OF APPARENT PROBLEMS The total time spent determining the

WITH THE COMPILER 18 5.37 need for changes then implementing
AVOIDANCES OF OTHER PROBLEMS IN them was 426.4 hours, 10 percent of

THE DEVELOPING ENVIRONMENT 2 0.59 the total effort for the entire project.
ADAPTATIONS TO A CHANGE IN THE The average cost was 1.27 hours per

DEVELOPING ENVIRONMENT 7 2.08 chage ut or t han per

IMPROVEMENTS OF DOCUMENTATION, change, but more than 80 percent of

CLARITY. OR MAINTAINABILITY 76 22.55 the changes took much less time.
OPTIMIZATION OF TIME, SPACE, OR
ACCURACY 2 0.59 Components involved. We deter-

INSERTION OR DELETION OF DEBUG mined the number of components
CODE 9 2.67 mined th ne ocmnen

OTHER THAN ABOVE 21 6.23 altered in each change. Seventy-seven
percent of the changes caused only one
component to be modified, but up to

determine how the product evolves, show that they were concerned about five components were modified in

The classification of changes can in- clarity and documentation. some changes. We also identified 70

dicate which factors might have af- The time to determine the need for interface changes (21 percent of all

fected the project. Information on how change was one hour or less in almost changes) defined as those that entail a

easily the product was changed might all cases. In addition, 46 percent re- change in more than one component at

indicate the quality of the product. quired only six minutes. The need for the same level of document. Only 2.9
Analysis of the 337 change request these changes was easily determined. percent of these were in the require-

forms (Figure 1) and the 439 individual Few changes took much longer than a ments; the rest were equally divided

document change forms indicates that half hour, although four changes re- between design and'cpde. As many as
the effect of Ada on the changes made quired more than one day to determine five components were altered in these
in the project cannot be distinguished they were needed: two were planned interface changes.
from the effect of any other factor. enhancements; one was an avoidance From this data, we conclude that

Code changes accounted for 61 per- of a problem with the compiler; and most of the changes were trivial and

cent. As stated previously, however, the last involved the creation of a involved a single component. Ada
many of these changes were errors global definitions package that inter- seemed to have little effect on the non-

which should have been caught at the faced with several components. error changes. Most of the changes
design stage. Thirty-two percent of the The amount of time needed to were error corrections, but many were

changes were in design documents, design and implement changes was improvements of documentation, clari-

and only seven percent were in re- also minimal. The majority took one ty, or maintainability. We do not

quirements documents. hour or less. Of the code changes, all know how this distribution would

The breakdown by type of change is but five took two hours or less. Two change if more testing were done; but,

shown in Table 4. The majority (57 changes, which took three hours and we strongly suspect that the number °f
percent) of the changes were error cor- one day, respectively, involved avoid- error corrections would increase.

rections which will be described in ing problems with the compiler. One
detail later. Of the non-error changes, change, which took one and a half Errors
52 percent were improvements of clari- days, was an adaption to a change in

* ty, maintainability, and documenta- the development environment. One Since Ada is a new language, pro-
tion. The low number of planned code change, which took four hours, grammers will make some errors when
enhancements indicates that the pro- was an error correction and will be using its new features. By determining
grammers tried to implement portions discussed in the errors section. The types of errors made, we can focus

, of the system immediately rather than global definitions package was imple- training, tools, and techniques on
start with a subset and enhance it later. mented in four days. The ew other eliminating or detecting the rno~t
The large number of improvements changes shich took much longer than pre% Aent or w% ere error,.

58 COY u : EP

.,_J



i: IIII
- - -

' We examined 192 error description Table 5. Errors by type of document.
forms (Figure 2). Each corresponds to

a change request that falls into the er- TYPEOF DOCUMENT NUMBER
ror correction category. We used AND HOW INVOLVED OF ERRORS PERCENTAGE

several different error classification REQUIREMENTS INCORRECT 2 1.04
m tREQUIREMENTS MISINTERPRETED 4 2.08

schemes to understand which errors DESIGN INCORRECT 29 15.10
occur and how to detect or prevent DESIGN MISINTERPRETED 0 0.00
them. Note that our figures (Table 5) CODE INCORRECT 151 78.65
differ slightly from Basili and Per- EXTERNAL ENVIRONMENT MISUNDERSTOOD
ricone 3 because some classifications (NOT LANGUAGE OR COMPILER) 0 0.00

- were changed, and the data were inter- CLERICAL ERROR 6 3.12

preted in fight of these changes.
We used the definitions of errors,

faults, and failures of the IEEE Glos- were successfully detected through chronization problem between two
sary of Software Engineering." A compiler messages, and a slightly components, took 5.2 hours. Another,

, -,- "fault" is a specific manifestation in smaller number were successfully de- which required 1.5 hours, was a logic
the source code of a programmer "er- tected through readings and walk- error involving input/output. The re-
ror." A single "error" can result in throughs. These same activities were maining three errors took an hour or
many "faults." A "fault" may cause a used to isolate the source of the error. more to isolate and another hour or

S"failure" when the program is exe- Code reading was more successful at more to correct. One required the in-
cuted. Errors were reported for this isolating than detecting the source, sertion of error checks and exception
project, but few, if any, failures were and the opposite is true of compiler handlers in a routine conforming to
reported because little testing was messages. In the case of design reading the specifications; this took one hour
done. and walkthrougfhs, detection of the er- to isolate and one hour to correct.

rors and isolation of their sources Another took four hours to isolate and
Document type. A common classifi- usually occurred simultaneously. This four hours to correct; it was an in-

cation of errors is by type of document information indicates that careful put/output syntax error. The last er-
and how it was involved. If we know design and code reading and walk- ror, which took ofie hour to isolate and
the documents involved, we can ex- throughs should be stressed and that one hour to correct, was a require-
amine them more closely for faults or language processors should be used as ments incorrect error. A superfluous
concentrate on their careful devel- much as possible to detect errors. requirements section was found and
opment. Table 5 shows a breakdown However, results of other activities, eventually deleted.
of the errors by document type. We such as test "runs, would surely have Table 6 shows the number of com-
can see that the majority (79 percent) appeared here if more testing had been ponents changed to correct each error
of errors were due to incorrect code. done. as well as the number examined while
Most of the remaining errors were at- As with the changes, most of the er- deciding how to make the correction.
tributable to incorrect design. Few er- rors were trivial. More than 80 percent (A distinction is made between errors
rors involved those requirements, took 12 minutes at most to isolate. in general and those which caused
probably because those requirements Only seven errors took an hour or compiler-detectable faults. This dis-

. ., had already been used on a previous more to either isolate or to correct. tinction will be described in more
project and were fairly well written. One error-a design incorrect error detail in the next section.) Since most

that involved renaming a file-took an of the errors were trivial and involved
hour to isolate but only six minutes to the syntax of a component, most of the

Detection and correction. If we correct. Another, classified as code in- corrections caused only one compo-
knew which activities were most often correct, took two hours to isolate but nent to be changed or examined.
successful at detecting errors, we could only twenty minutes to correct. An
concentrate training and tool devel- undefined part of a string was passed Possible detection by tools. Detec-
opment to support them. In this proj- as an argument to a function. Two er- tion by tools is one method of classify-
ect, compilation, design reading, rors involving incorrect design each re- ing faults. Theclassification will beex-
design walkthroughs, and code read- quired only six minutes to isolate but panded in later studies, but wke used it
ing werc most often used to detect er- more than an hour to correct. One of here to separate compiler-detectable
rors. Approximately half of the errors these, a tasking error involving a syn- from noncompiler-detectable laults.

September 1985 59

A_

I I



Table 6. Number of components involved In error correction (with all errors been removed by the time data collec-
and without compiler detectable faults). ton begins on many projects. There-

NUMBEROFMODULES ALLERRORS W/O COMPILER FAULTS fore, the data from which those faults

INVOLVED CHANGED EXAMINED CHANGED EXAMINED have been removed might be compar-
13 13 able to early development data in later.,1 173 167 35 31

" 2 16 20 7 9 projects. Table 7 lists the data for this

3 3 5 2 4 project using this classification scheme.

Number of errors per module.

Table 7. Er classified by which tool would detect them. Tables 8a and b depict how many er-
rors were reported in each of the 67

W TOOL NUMBEROF PERCENTOF modules (Ada and non-expanded

WOULD DETECT ERRORS TOTAL ERRORS PDL). Table 8a shows the total errors

C i148 77 reported, and 8b itemizes the number
80 42 of errors reported in which the fault

Not BNF 68 35 was not detectable by a compiler. The
Not CUniW" 44 23 letters in each row indicate which pro-

grammer wrote the module. The mod-
ules with more than ten errors had 15,

Table a. Number of reported enors in module. 11, 20, 12, and 27 reported errors,
ERSM ESI -respectively.

M#ERRORS #MODULESWITHERRORS TOTAL Further processing after project
.PL ADA PDL completion showed that most of the

.. 0 SSSJJJJJJJJ LJJJJJJJJJJJ 11 13 non-expanded PDL modules had
1 LSSSJJJJ LLL 8 3
2 LSJ L 3 1 compiler-detectable faults even

3 SSJ 3 0 though no errors in those modules
- 4 SSSSJJJB 8 1 were reported. This fimding indicates

5 SSJJJ 5 0 that the modules wsre written, ex-
6 LSSJ 4 0 panded into code, then essentially ig-:-.7 SJ20

>10 LSSJJ 5 0 nored. The data in Tables 8a and 8b
reinforce this observation. The senior
programmer seems to have found
more of the less obvious errors than

Table 8b. Number of reported errors in module (without faults detectable other programmers since his modules

by compller), have more reported errors that were
not compiler-detectable.

. ERRORS 0 MODULES WITH ERRORS TOTAL
- . IN MODULE ADA POL ADA PDL Omission or commission. Another

0 LLSSSSSSSJJJJJJJUJJJJJJJJ LLLJJJJJJJJJJJJ 25 15 type of error classification, presented
1 LLSSSSSSJJJJJJ8 L 15 1 by Basili and Perricone, s divides er-
2 SSJJ LB 4 2 rors into the categories of omission
3 SS 2 0 and commission. Errors of omission
4 S 1 0 leave out some portion of code while
10 S 1 0 errors of commission include errone-

Bous or superfluous code. Table 9 pre-

L: Lead programmer S: Senior programmer J: Junior programmer B: Librarian sents the data for this project as well as
some of the data from Basili and Per-
ricone. Note that the percentages for

The compiler -detctable faults are fur- able by a pro:essor based on BNF all errors from this study and in new
ther divided into those related to the should be eliminated with a syntax- modules from the earlier study are
BNF of the language and those that oriented editor, which might also almost the same. This is probably

might require more informati(on than eliminate some of the other faults. coincidence, since the data was gath-

the BNF contains. Those faults detect C mpiler-detectable faults have often ered at different times during de\elop

60 COMPUTER

*1-, ",.*:, , -. : . . - *. ..:*. *.*. : .... '." - .,"- -". ..".... ,. ". - •.



' Table 9. Comparison of errors of omission and commission.

_ERRS .. . RAWERRORS . __PERCENTAGE -
INVOLVED OMISSION • COMMISSION OMISSION, COMMISSION

*" This study
All errors 89 103 46 54
w/o compiler faults 23 21 52 48

Basili & Perricone
All errors 79 143 36 64
New module errors 52 63 45 55

ment, and our data are incomplete. Table 10. Number of language, problem, and clerical errors.
This categorization will be included in

* some of the following tables. Errors of NUMBER OFERRORS
omission generally will not be caught CATEGORY.__ _ALL ERRORS W/O COMPILERFAULTS.
by testing with a structural coverage
criterion and may be overlooked in Language 160 18
code reading. Concept 8 8

Semantcs 44 10
Language, problem, or clerical. We 26 0

Probelem 26 26
developed yet another classification Clerca 6 0

scheme where the errors are identified
as language, problem, or clerical.
Language errors are closely related to
the use of Ada and are further classi- curred per thousand lines of text (any Several errors also involved tasks,
fied as concept, semantics, or syntax. line containing part of an Ada state- separate compilation, generics, and
A syntax error involves a misunder- ment) and almost I I syntax errors per procedures and functions. As pre-
standing or misuse of the syntax of a thousand non-blank lines. viously stated, most of the errors were
feature; a semantics error involves a The language-problem-clerical clas- compiler-detectable. Only eight con-
misunderstanding of the meaning of a sification can be used in conjunction cept errors, which involved tasking,
feature in that language; and a concept with the document-type classification exceptions, and packages, occurred.

* error involves a misunderstanding of a as seen in Table II. Not surprisingly, Of the 44 semantics errors, nine in-
feature's use. The problem category most errors involving requirements volved parameters, six, generics; five,
results from a misconception of the were problem errors, and most of the compilation units; four, declarations;
problem domain or the environment, errors involving incorrect design or and three, overloading. However,

4 Clerical errors include those due to code were language-related errors. many of those could be detected by a

carelessness, e.g., typographical er- compiler. If the compiler-detectable
rors. This classification is somewhat Ada language features. Several Ada faults are removed, only 10 semantics
subjective, however, since the project language features were involved in er- errors remain, and four of those in-
monitors tried to determine what the rors. Understanding the relationships volve parameters.
programmer was thinking when the er- between errors and features may help In general, few serious errors were
ror occurred. prevent the errors. Table 12 shows the reported in this project because little

- Of the 192 error description forms language features involved in errors, testing was done. However, the data
examined, 160 (83 percent) claimed with all reported errors included. In reported suggests the types of errors to
that the use of Ada contributed to the Table 13, the errors that caused com- expect when people given training
error. As shown in Table 10, the ma- piler-detectable faults have been similar to that of our programmers
jority of the errors were language er- removed, learn to use Ada. Similar errors might
rors. and 67 percent of those were syn- Low-level syntax (e.g., semicolon, be made when learning any new lan-
tax errors, which explains why so parenthesis, assignment), loops, decla- guage, however, particularly with such
many, of the error,, took so little time to rations, and parameters were involved a large number of new features and
correct. Almost 21 syntax errors oc- in the most common Iangulage errors,. concepts.

Septemow' 198i5 61

*

",,=" x" # e" ,,_ ',v ,,. " " ." , " " . '," ., " " ." ," . " " ,t . ' ' . ''L "" ,' - . , -'- , ' "-,, r,- , .- , ",--.-". .. .,



Table 11. Type of document vs. language, problem, or clerical classification and aid in the evaluation and modification
omission or commission classification (data excluding compiler detectable of training in Ada concepts and ap-
faults In ). plications. In addition, tools might be

I FOCUMENT NUMBER OF ERRORS developed to help people learn to use
AND HOW INVOLVED LANG PROB CLER OMISSIOJ. COMMISS0O1 Ada's more unusual features.

Requirements incorrect 0 2(2) 0 1(1) 1(1) By examining its simplest features,
Requirements misinterpreted 1(1) 3(3) 0 3(3) 1(1) we discovered that except for the goto
Design Incorrect 24(8) 5(5) 0 14(6) 15(7) and code statements and representa-
Design misinterpreted 0 0 0 0 0 tion clauses, the progran.mers used all
Code Inoorrect 135(9) 16(16) 0 70(13) 81(12)
External environment of Ada's syntactic features. Tasking,

misunderstood 0 0 0 0 0 generics, packages, exceptions, and
Clerfcalerror 0 0 6(0) 1(0) 5(0) overloading along with pragmas,

8 1 1 aborts, and delays were used nominal-4 T o t a l 1 6 0 1 8 ) 2 6 ( 2 6 ) 6 ( 0 } 8 9 ( 2 3 ) 1 0 3 ( 2 l . H w v r , we)h s s e aiT- _, .... . -___ ... _!ly. However, when the system was

designed, the programmers did not
Table 12. Errors categorized by Ara language feature. know how to use these concepts on this

application. Therefore, they might

NUMBER OF ERRORS have been uncomfortable basing their
ADA LANGUAGE FEATURE _ ..... CON _ SEM SYN OM COM TOTAl,. design on some of Ada's more ad-

'  Semicolon 0 0 17 13 4 17 vanced features. If the programmers

Parents 0 0 12 9 3 12 had more examples within their appli-
Colon 0 0 4 2 2 4 cation domain, they might be able to
Assignment 0 0 5 1 4 5 take advantage of these features.
Strings 0 0 4 3 4avantage of these fas
Comment 0 0 4 2 2 4 Wealsolookedattheuseofpack-
Identifier 0 2 3 0 5 5 ages in the system to determine
Loop 0 2 8 7 3 10 whether concepts such as data encap-
Case 0 0 1 1 0 1 sulation and information hiding were

.if 0 0 6 2 4 0f n 0 0 6 2 4 6 used effectively. The senior and junior
Begin/end 0 0 4 3 1 4
Return 0 0 1 0 1 1 programmers defined 1 1 packages for
Scopmng 0 0 2 1 1 2 use with this project; however, the lead
Typing 0 2 5 0 7 7 programmer and librarian defined
Aggregate 0 1 0 0 1 1 none. Two of those I I packages ser'ed
Arrays 0 2 2 1 3 4Recorls 0 2 2 2 2 4 as definition common blocks; three
Declarations 0 4 8 7 5 12 were libraries of functions; four de-
Parameters 0 9 5 3 11 14 fined encapsulated data types export-
Procedures & functions 0 2 5 2 5 7 ing private-type definitions and opera-
Access type 0 1 0 0 1 1 tions; and the remaining two defined

4Tasking 5 0 4 4 5 9ExpTasins 2 0 1 0 3 3 types but exported the representationExceptions 2 0 1 0 3 3

Genertcs 0 6 2 3 5 8 of the type. Of the four packages
Packages 1 0 1 2 0 2 which defined encapsulated data
Compilation units 0 5 2 5 2 7 types, two were device drisers and one
Attributes 0 1 0 0 1 1 was a mathematic..l function; the re-

",vePragmas 0 2 0 0 2 2 maining package definition had noO v e rlo a d in g 0 3 0 0 3 3 n o - . T i i d c a e.: corresponding bod.y. This indicates
Totals 8 44 10t 73 87 160 that no new encapsulated data types

,V.- were defined. The programmers used
packages for types they had used in

, Ada use grammers might begin with a subset of other languages. While globally .,isi-
the language. Ada also supports a ble, many of these packages \%ere not

A description of how the language is number of soft\are engineering con- needed globally, indicating that the
used is the fourth goal. Since \da is cepts such as information h~ding and programmers did niot understand the
complex, it was thought that the pro- abstraction. Assesing Ada use might concept of intormation hlding. ,ii-

62 CO Pu TER,"

: : .... .. .. .. . . .. ..-.. . . . . ... .. . •., . ,
>, ,, ' " . - ' . . ' ." ... ., '.' " .,r ':', , : "" , - . " . .mP. :A'." ' ."_ _,' r -.'/ : _ " :



-I - II I- --- - - -- - - _

non describes the use of packages in Table 13. Errors categorized by Ada language feature (without compiler
greater detail. 2  detectable faults).

Most programmers are not ac-

customed to high-level language sup- AOA LANGUAGE NUMBER OF ERRORS
port for their concurrency needs. FEATURE CONCEPT SEMANTICS OMISSION COMMISSION TOTALI
Familiarity with concurrency in .op 0 2 2 0 2
another language would be of little Arrays 0 1 0 1 1
benefit, however, as Ada uses an Parameters 0 4 0 4 4

* unusual model, rendezvous and tasks, PcIures &
for concurrency. We wanted to know f 1 1 0 1
how tasks were used in this system. Tasking 5 0 2 3 5
Although the system was designed Exceins 2 0 0 2 2
with communicating tasks, they were 0 2 2 0 2
at a high level and had little corn- packages 1 0 1 0 1
munication. Ten tasks were defined: [Totals 8 10 8 10 18
one by the lead programmer, four by
the senior programmer, and five by the
junior programmer. Except for two
cases, each task had only one or two ever, no discernible subset was de- for examining their code or they
entries, and since the system was not fined. Other than the code statements worked so closely together that their
tested, it is difficult to know whether and representation clauses, which were individual differences are hidden.
this use was appropriate or, indeed, :' not needed for this application, most Productivity is one area where some
it worked. Only further experience of the language was used. Therefore, differences between programmers sur-
with tasks would determine their use. use of a "subset compiler" would not faced. While the rest of the program-
Training in tasks, like packages, have been appropriate and might have ming team produced 7.3 lines of code
should probably include examples limited the programmers' design of the per hour spent in design and code de-
from the appropriate application system. velopment, the senior programmer
domain. produced 16.5 fines per hour. By all

We also sought an understanding of Programmer differences reasonable measures of productivity,
the exceptions used. However, it re- the senior programmer was most pro-
mains unclear when exceptions should The fifth goal discussed includes a ductive. The junior programmer was
be handled in the module raising them description and evaluation of the dif- somewhat more productive than the
and when they should be propagated. ferences between programmers and lead programmer and the librarian.
Nevertheless, the programmers tried their use of Ada. Programmers with The fact that the junior and senior pro-
to use exceptions, if only for passing varied backgrounds might use Ada grammers wrote the most code and
back error codes. Twenty-one of the differently and might make different became most familiar with Ada may
non-package modules had exception types of errors. If these differences are explain the disparities in performance.
handlers, and exceptions were raised significant, they might suggest dif- The only marked difference among
explicitly in 17 modules. Without ferences to be seen in other environ- programmers' errors was that the
knowing whether the system runs, it is ments. They might also suggest how to junior programmer made the most
difficult to ascertain whether this use tailortrainingtomeettheneedsofpro- language, and particularly syntax, er-
of exceptions is sufficient or ap- grammers with varied backgrounds. rors. However, he performed the most
propriate. We found that the programmers code testing and therefore had the

The results of this portion of the used most of the language in basically greatest opportunity to discover er-
study are mixed. While the program- the same way. The librarian wrote so rors. He also had the most extensive

* mers used many features of the Ian- little code that drawing any conclu- background in software engineering
guage, it is difficult to determine sions about that code or programmer methodology, which seemed to help
whether that use was nominal or ap- would be presumptuous. Other than him understand how to use Ada and
propriate. Furthermore, we know little their definition and use of packages, offset his lack of experience in the ap-
about how Ada should be used. Most the otlier programmers' code is basi- plication area.
examples in the literature are too small cally indistinguishable. Either we do Overall, the programmers seemed
to compare sith this project. tiow- riot have the appropriate techniques to %rite code utine the features of the

September 1985 C,

44~

*14i

ft..--,. '" . ' . '. '- . " . " . " . . " - ," . " . " ,,." . - , " . ' , : . " . , '- :"" . . " . . . . , . "'



language they thought they knew best. We neither know how nor when to use lowed for a project to be successful,
The senior and junior programmers, exceptions. tasks, and generics, and and programmers must understand
who had varied language experience, can only gain this knowledge by study- the methodology and tools before the
used the more Ada-like features such ing various alternatives and showing project begins. In this case, the lack of
as packages, but the lead programmer how they work with examples from useful tools proved troublesome. In
also used tasking and generics. The Ii- various environments. In this respect, addition, the PDL was loosely def nied
brarian, with little language experi- the project has raised more questions until after design began. Effective
ence, used a simple subset of Ada. He than it has answered. design reading might have caught
only wrote two modules, which re- Design alternatives must be investi- many errors. If we had tested this proj-
quired only a subset of Ada. None of gated. The design for this project was ect after a compiler became available,
the programes made errors remark- fo or itha le a test plan created after the require-
ably different from those of the others, the earlier Fortran design. A group at ments were completed would have
although further testing might have General Electric developed an object- been necessary. However, that aspect
shown otherwise. Productivity ap- oriented design for the same project, 9  of the methodology was deemed unim-
eas toe the only aspect of this proj- and it is not clear which design if portant. Language is only one aspect

ect that could be used to differentiate either, is most appropriate. Just as a of the environment and methodology.
programmers. combination of top-down and bot- It cannot save a project in which the

tom-up development is appropriate to rest of the methodology is ignored.

A lthough the project ended before many applications, a combination of We believe this project is atypical
development was complete, the functional and object-oriented design since it was not finished and no compi-

results indicate what might happen in might well be most appropriate. Only er was available. However, it is typical
early stages of development in other by determining which design type, or in that training consumed an enormous
projects. A number of results from this combination of types, is best suited to amount of effort, and the programmers
project might prevent others from the particular application can we teach were not familiar with the underlying
making costly management mistakes. people which design approach to use. software engineering concepts of Ada.

Above all, it should be noted that Without such training, programmers In this respect, it resembled the begin-
learning Ada takes time, a factor that must rely on their experience with ning of many projects. Also of note,
will influence any estimate of effort other languages and will probably pro- the learning cure'in methodology is

.,for early projects using Ada. Training duce functional designs. quite large. As we study more projects
will probably have to continue as team Proper tool support is mandatory. that use Ada, we will learn how to both
members learn the finer points of the This project was undertaken without a teach and use it and discover how to re-
language, production-quality validated compil- duce mistakes. In the meantime, ve

Ada is more than syntax and simple er-a necessary tool. Likewise, a Ian- know that using Ada will be difficult at
examples.Theunderlyingsoftwareen- guage-oriented editor, capable of first, but in time its use will make us
gineering concepts must be taught in eliminating 60 percent of the observed more effective in applying existing
conjunction with the support Ada pro- errors, would have been desirable. software engineering techniques to
vides for those concepts. Examples Such an editor would have freed the ease the programming process and
from the relevant problem domain will programmers to concentrate on the thereby increase the quality of the
help students fit Ada into their en- logic errors that undoubtedly remain product.
vironment. Since most programmers in the design and code. Such an editor
are not familiar with the methodol- would have dramatically reduced the
ogies developed in the 70's, which Ada error rate. Other useful tools for this
supports, training in software engi- project would be data dictionaries, call Acknowledgments
neering methodology and its use in the structure and compilation dependency
environment of a particular applica- tools, cross references, and other Elizabeth Kruesi Baile,. John W.
tion is an absolute necessity. means of obtaining multiple %iews of Bailey, John D. Gannon, Syklia B.

How Ada should be used remains the system. A PDL processor with in- Sheppard, and Mar,in V. Zelkoitz
unclear. Ideally, our understanding of terface checks., definition and ue reli- "ere the other monitors of this project
the software engineering concepts that tion lists, anti \arious, meorics ould and contributed to the \sork reported
Ada supports would simplify its use,. also hase aided in the earN taLges ot here. The authors woulJ also like to
However, many people learn by exam- deselopinent. thank the other members ot our r'-

*"-" pie, and good examples are licking. Some niethodoloc mi:,t hc fol- g .h eroup, Irticu1arl\ IXid II.

64 COPA,UT CR@1m....



Hutchens, James T. Ramsey, and
Richard W. Selby, Jr., for numerous A a
enlightening discussions concerning
this project. Research for this study
was supported in part by the Office of
Naval Research and the Ada Joint Pro-
gram Office under grant N00014-82-K-I 0225 to the University of Maryland.

0 o e v y M a Victor R. B is professor and chairman Nora Mofina Pan io-Yap is a research.-,of the Computer Science Department at the assistant at the University of Maryland. Her

University of Maryland. He is currently area of research is software engineering.
measuring and evaluating software devel- She obtained the BS in chemical engineer-
opment in industrial settings. ing from the University of the PhilippinesReferences Basili was involved in the design and in 1976, and the MA in computer science
development of several software projects, from Duke University in 1982. She is cur-

"I-. .V.R. Basiland E. E. Katz, "Metrics including the SIMPL family of program- rently working towards the PhD in com-. sa E t e ming languages. He has authored over 60 puterscienceat the Universityof Maryland.of Interest in an Ada Development, published papers. In 1982, he received the Shewas a World Fellowship recipient of the
IEEE Workshop on Software Engi- Outstanding Paper Award from the IEEE Delta Kappa Gamma Society Internationalw, .. neering Technology Transfer, Miami,eeFL, Apr. 1983, pp. 22-29. Transactions on Software Engineering. He from 1979 to 1984 and has been an Interna-

was program chairman for both the Sixth tional Fulbright Scholar since 1979.
2. J. D. Gannon, E. E. Katz, and V. R. International Conference on Software

Basili, "Characterizing Ada Pro- Engineering and the First ACM SIGSOFT
grams: Packages," The Measurement Software Engineering Symposium on
of Computer Software Performance, Tools and Methodogy Evaluation, and
Los Alamos National Laboratory, serves on the editorial boards of the Journal
Aug. 1983. of Systems and Software and the IEEE

3. V. R. Basili et al., "A Quantitative Transactions on Software Engineering. He
Analysis of a Software Development is a member of the ACM and the executive
in Ada," University of Maryland tech. committee of the Technical Committee on
report UOM;1403, 1984. Software Engineering, and is a senior L

member of the IEEE CS.4. V. R. Basili and D. M. Weiss, "A Connie Loggia Ramsey is a doctoral can-
Methodology for Collecting Valid didate and research assistant in computerSoftware Engineering Data," IEEE science at the University of Maryland. Col-
Trans. Software Engineering, Vol. lege Park. Her research interests include the
SE-, No.6, Nov. 1984, pp. 728-738. development of expert systems for soft,,are

5. J. W. Bailey. "Teaching Ada: A engineering. She received her BA in biology
-,".',. Comparison of Two Approaches," from the State University of Next York at

First Washington Symposium on Ada Binghamton in 1979.{ Acquisition Management, ACM,
Laurel, MD, March 6, 1984.

6. M. V. Zelkowitz et al., "Software Elizabeth E. Katz's research interests in-
Engineering Practices in the US and clude the measuremett and evaluation of
Japan," Computer, Vol. 17, No. 6, the effect of various tools and techniques
June 1984, pp 5 on the software development process and

7. IEEE Standard Glossary of Software its product, as well as the development of
Engineering Terminology, IEEE- such tools and techniques. Her current
STD-729-1983, IEEE, New York, focus is on measures for developments A :.
1983. using Ada. She received a BS degree in

8. V. R. Basili and B. T. Perricone, computer science and English from the Shih Chang i, itterested in sotare
"Softyare Errors and Complexity: College of William and Mary in 1981. an decelopme B techniques and tools. fie
An Empirical Investigation," Comm. MS in computer science from the Unieri. rom a [ er,, in omprand in 1983,

from the L ni~ersil\ of Niarylnk n 93..-lA, Vol. 27, No. I, Jan. 1984. pp tyofMaryland in 1983. and i, no\% \orking %%here he is :ur~ctitI% a graduate student in42-52. to%%ard her PhD at Maryland. 'he is a stu cnpit c:c. fie is a student member
9. A. G Duncan ct al.. "Comnunica. dent mnihcr ot ACM and I1FF. o tie C(', and IFITF computcr Swilet,.

non% System Design U.sing Ada,"
l'ro,('. Si'v'enthlt Int'. Conf Sotwlr Qiii't notoutllh .irtidc knhhd fhretcdti\ R 1|t.'! I Dl,,t( omlutcr" .:,.e.
n cteril,. 1%4, 4. pp 19,8--4)" 1 n ~rl .c',,', oil \I~ lan d. ('ollc,:c l'ark, \11) 2ti42

- S - 1985



LVE

%WUI1 e r ( 1- .1A-

e.161% e


